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LASER-STIMULATED VIBRATIONAL EXCITATION OF AN ADSPECIES STUDIED BY A

GENERALIZED MASTER EQUATION:

NEUTRAL ATOMIC HYDROGEN ON HYDRATED KCt(O01)

A. C. Beri and Thomas F. George
Department of Chemistry
University of Rochester

Rochester, New York 14627

Abstract

Vibrational energy transfer between an IR laser, a solid surface and

an adatom is studied by a generalized master equation which includes memory

effects. Numerical problems associated with the temporally delocalized

memory kernel are overcome by introducing the isomnesic approximation.

Results obtained for time scales ranging from 2 ps to 2 iis for H(42p)/KCI(OOl)

show that effective vibrational excitation is possible with low power lasers
2

(1 W/cm )in spite of fast phonon relaxation. Detailed time-evolution of the

system is seen to differ radically from that predicted by Markovian theories,

even for fairly long time scales.- ,'
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I. Introduction

Developments in the experimental study of clean, well-characterized

solid surfaces and surface processes such as scattering, adsorption, de-

sorption and migration in the presence of laser radiation have resulted

in important technological.applicaltions (e.g., laser-assisted vapor

deposition of microcircuits). The underlying dynamics of these hetero-

geneous systems is a many-body problem involving the elementary excitations

of the solid and its surface, such as phonons, electrons and plasmons, the

degrees of freedom of the adsorbed species or gas molecules, and those of

the laser. 1,2 The excitation process can be considered as direct laser-

pumping of the substrate leading to a primarily non-selective thermal

effect, or a pumping of the adsorbed species, which can be selective in

the sense that only a single degree of freedom is excited by the laser.

The resulting energy absorption and the dissipation involving all other

degrees of freedom govern the overall chemical process.
3 8

In this work, the vibrational excitation of a prototype system, viz.

the adsorptive bond (adbond) between an atom and a surface is studied.

This system is not in the same category as those in which internal vi-

brational modes of an adsorbed molecule are excited, with subsequent energy

transfer to the adbond.7'g  It is substantially simpler, in view of the

aim of this work, which is to investigate the mechanisms involved in IR

laser-stimulated surface processes (LSSP) using a treatment which is as close

to first-principles as possible. One of the fundamental questions addressed

is whether a low-power laser, because of its coherence, can deposit large

amounts of energy into a specific mode of a system (such as an adbond)

* which is coupled to energy sinks, such as phonons, which are not infinite.

-0L-



Early classical treatments10 of the problem and phenomenological quantum

treatments4'5 provided conflicting answers to this question. Recent, more

fundamental studies8 have suggested that extremely high laser powers would

be needed to effectively desorb an adspecies. However, our preliminary

work showed that a very small degree of detuning between the laser and

energy levels of the system excluded the possibility of long-term energy

absorption. The reason for this behaviour is seen to be the oscillatory

nature of the laser energy absorption "rate" (actually, the memory kernel)

for the adbond, with a frequency related to the detuning, typically a small

percentage of the laser frequency itself, viz. - 10 -lo0 s . Thus, for

processes lasting over a few hundred picoseconds, substantial cancellations

in the overall absorption can be expected, and only a very high-power laser

would be able to compete with the loss of energy from the adbond to phonons

through relaxation effects. In view of this, the systems chosen here have

little or no detuning, viz. systems with one bound-to-bound transition

exactly resonant with the laser frequency and another very close to or

equal to the Debye frequency of the solid. This represents an ideal

situation which emphasizes the coherent nature of laser radiation.

The widely varying temporal behaviour of dynamical systems far from

equilibrium is well established. From a fundamental point of view,

theoretical treatments of such systems depend crucially on the time scales

being considered. The most common long-time limit, for example, allows

a description of energy transfer in terms of average relaxation rates in

the Markovian approximation, where approach to equilibrium is assumed to

be monotonic. Non-Markovian behaviour is assumed to last for extremely

short times compared to typical relaxation times of the system. The forces

are considered to be random, with a very short correlation time. Resonant

excitation with a low-power laser does not satisfy these conditions, and
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one should expect non-Markovian behaviour to persist for times that

increase with decrease in laser power. Whether the two approaches lead to

the same steady state is also open to question.

Non-Markovian effects are conveniently treated by using a generalized

master equation (GME) to describe the time-evolution of the adbond (the

"relevant" system) with the laser and phonon fields as two uncoupled

irrelevant systems (reservoirs).12 "14 The Liouville equation for such a

system is conveniently solved by using the Zwanzig projection-operator

technique12 and results in a set of coupled integrodifferential equations

for the occupation probabilities PS of states IS> of the adbond:1
4

Ps(t) = I ft dt' [Kss,(t-t')Ps1 (t') - KsIs(t-t')Ps(t')) , (1)

SIS 0

where the memory kernels KSS, include contributions due to the phonon field

K(p ) and the radiation field K(r):

KSS,(t) = KSP)(t) + KSs)(. (2)

Using a one-dimensional lattice and a Debye model to describe the

lattice vibrations, we have obtained K (?) in a closed form which involves

a summation over all lattice positions L and number of phonons n inde-

0 pendently. ll 'l  The former is due to a summation of pair potentials

between the adatom and the lattice atoms, while the latter results from

an expansion of exp[y . ,(t)] in a Taylor series, where yM(t) is the

lattice displacement correlation function

yu, (t) = <<u (t)uI> . (3)

Using techniques described elsewhere, YL9 1 M(t) can be obtained in closed

form as
y10,(t) = Ri,(t) + i I 9 9,(t) , (4)
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where , and I,, involve products of polynomials in t and cos ( ot)

or sin (w t), and is the Debye frequency. The phonon part of the

memory kernel can then be written in terms of all the system parameters as

follows:

=j1t A (B~) X paf
n ltip

(5)

x x ,uu( -S')[Era(t)cos(wt) + OnAi(t) sin(wss.t)].

Here A (0) )
A= 8 ) , (6)

B= 6 ((0)k bT)2/m stD3 , (7)Bp

Je 2 n-i e

mnx.,e , 0) < n I t (8)Je=0 52 9'4 ..."  e) , ,

Rpt 1"11 0 (9
Oni t) 0 j= ,3,5.. jo! (n'Jo)! It{ It

properties of the expansion in number of phonons n. It is of the order

of .02 for common temperatures T and common Debye frequencies (kB is the

Boltzmann constant and ms the mass of a lattice atom). U and v' take on

the values 1 and 2. The supermatrix X involves powers of exp(a) and

exp(< u2 >>) and the matrix elements

=S, > <Se 0 (11)

" .:' .
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where a is the lattice constant, u is the lattice displacement operator,

and z is the distance of the adatom from the equilibrium position of the

outermost lattice atom. The frequencies wSS' correspond to transitions

betwee levels IS> and IS'> of the adbond represented by a Morse potential

with depth D e , equilibrium distance z O) and exponent s

T e 0ito pr r
The radiation part KS(r)" of the memory kernel is given by

(r)2K S.(t) = A ZS'S SSICos (uw~SS- Dt' (12)

where ZSS, = <SlzlS'>. The amplitude Ar = (le02/ 0ch2 ) is proportional

to the laser frequency I and the square of the charge separation e0 between

the adspecies and the surface.

The complicated form of R,, and 1,,, precludes analytic solution of

the GME. Numerical solution is made difficult by the presence of high

U frequencies in K55 ) and the large difference in the magnitudes of

Ar(-lO 17 s-2 for a 1 W/cm2 laser) and A (-l029 s-2 for D(O ) = 0.1 eV).r p e
One can only solve the exact GME for a few periods of oscillation of KSS, 9

which amounts to a few picoseconds.

Examination of a typical phonon kernel, Fig. 1, shows that it has

substantial amplitude only for times of the order of a Debye period D

representative of phonon correlation times. The laser kernel, on the

other hand, has constant amplitude for the case wL = wSS' for a given

pair of levels (S,S'). For times larger than T., the integrated effect

due to KSP)" will be unchanging because of cancellations, whereas that

due to K(rj) will be cumulative. We have recently demonstrated this effect 1

using the exact GME (with a very high laser power in order for the effect

to manifest itself in the very short time for which solution was possible),

and predicted, via extrapolation arguments, that effective pumping of the
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adbond with a low-power laser would be possible if the long-time regime

could be examined. We present here an actual calculation of this long-

time behaviour using low-power lasers, and find that the average adbond

energy, given by

E(t) = SE Ps(t) (13)

where ES are eigenvalues of the zeroth order adbond Hamiltonian, rises

rapidly after an initial loss to the phonon field, and exhibits a decidedly

non-Markovian pattern throughout.

The approximations required for the long-time treatment are described

in Section II. The resulting probability and energy profiles are presented

in Section III, where comparison is made with the exact results (for a short-

time scale) and with a Markovian limit.

II. The Isomnesic (Constant-Memory) Approximation

We begin with the assertion that the physically important situation is

one where the laser frequency and the Debye frequency equal different11(r)(t eoe

transition frequencies wSS' of the adbond. For this case KSS(t) becomes

a constant kSS, (from the term with SS, [ = wL) plus oscillating terms which

we ignore in the sense of the rotating-wave approximation.16  The phonon

term, KS )(t) has a complicated behaviour typified by K(P)(t) in Fig. 1,• 03'

but we note that it has appreciable magnitude for times - 2 ps, and almost

vanishes subsequently. If the mesh size of our theoretical experiment is no

less than 2 ps, we can treat KSS, (t) as a delta function, so that, from

Eq. (2),

KSS'(t) OSS' 6(t) + k SS (14)

where
SS= f0 dt KS '(t) . (15)

/ - L. -- I) . . - .. L" " "i " . -. . .. ( L. - L, . - .. - . T .. (-. L . • .L0
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In Eq. (14), the first term, originating from the coupling of the adbond

to the phonons, is the amnesic or Markovian term, and would lead, in the

absence of the laser term, to the elimination of all memory effects. The

second term, due to the resonant laser coupling, is the isomnesic non-

Markovian term, and represents a constant memory effect all the way back

to t=O.

The subsequent treatment is simplified by defining "diagonal" elements

9S asSS-
SS ass ,  (16)

and similarly for kSS , and by introducing the vector notation P(t) = {Ps(t)}

and matrix notation o S , k = {kssl , etc. The exact GME may be

written as
t

P(t) f f dt' K(t-t') P(t') ; (17)
0

in the isomnesic approximation (IA) it becomes

t
P(t) = k • f dt' P(t') + n-P(t) (18)

Formally this can be solved without any further approximations. Differentiating

both sides of Eq. (18) we get the second-order differential equation

P(t) = k.P(t) + 0 .P(t) , (19)

whose Laplace transform,

M(s). P(s) : T(s) , (20)

where

U(s) k + so - 2 A (21)

T(s) - sP(O) (22)

and P(s) is the Laplace transform of P(t), is easily inverted using the

Heaviside expansion theorem.

While this effectively eliminates the non-Markovian bottleneck, it is

instructive to generate solutions of a Markovian version of this class of
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problems. To do this, we have to make provisions for localizing K'in

time. This brings to the fore the pervasive issue of time scales in

dynamical many-body systems, our specific question being the relative

degree of localization ascribable to KS(P) and K SSr) If the laser

radiation is localized as'a pulse, it can still extend over a period of time

much longer than the extent of K l)(t). In other words, the delta function

representing KSS (t) may be quite different from the delta function

representing KSS)(t),r and the former may in fact not really be considered

as localized with respect to the latter. With these provisos in mind, we

can proceed to write the Markovian version of Eqs. (14), (17), (19) and (20):

K(t) = ( + f) 6(t) , (23)

P(t) = W P(t) , (24)

J(s) P(s) = U, (25)

where

f = k , (26)

W = 0 + f ,(27)

J(s) = (Q + f - sA), (28)

U:- P(O) , (29)

and T represents the actual extent of the laser signal or a variable time

parameter. Equation (24) is the well-known Pauli master equation (PME).

III. Results of the Exact, Isomnesic and Markovian Approximations

The formalism of Sections I and II was applied to the system

H(H20)/KC(00), the primary reasons for choosing which are the shallow

adsorption potential well and the small number of bound states (7) it

generates.17 In Fig. 2 the results of the IA and the exact GME are compared for

the system of references 11 and 15. The two are identical for H(H20)/KCZ, and

are not shown. While this is a short-time-scale comparison, the closeness
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of the two leads us to expect the long-time IA results to be reliable.

The Markovian approximation, on the other hand, cannot provide an un-

ambiguous comparison because of large variations in the results for

different values of T , shown in Fig. 3. All subsequent figures, there-

fore present our IA results.

Figure 4 is a composite display of the function E(t) obtained from

results of Eq. (28) for six ranges of time differing by factors of 10 and

for a laser intensity I = 1 W/cm2 . It is seen that in going from a pico-

second time range to a micro-second time range, the behaviour of the system

changes dramatically. The early behaviour is dominated by fast energy

transfer to phonon modes, completely overwhelming the slow laser pumping.

The monotonic decay is representative of relaxation phenomena. For the 100 ps

range, a false steady state seems to have been reached, but is in fact only

an artifact of the large difference between Ar and A . The adbond energy

starts to increase in the ns range, again suggesting a possible steady state.

However, this is a transitional period during which the relative importance

of the phonon terms and the laser terms starts to change. The latter, in

fact, originate from a probability profile of the form (Aeat cos Bt -

Bea t sin Bt), where a + iB are complex roots of

det M(s) = 0 , (30)

and A + iB are complex coefficients obtained from M(s) and T(s).

The phonon terms come from real roots and are therefore nonoscillatory.

The magnitudes of the exponents a in the laser part of the solution are

much smaller than corresponding exponents in the phonon term. This is

responsible for the radically different nature of E(t) in the different

time regimes. Thus, the seemingly monotonic rise in E(t) apparent in

the 10 ns regime is seen to be only the early segment of a cycle which

.- -A. --.-- : . .. .. .- " ..
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Figure Captions

Fig. I. Memory kernels K(t) for (S,S') = (0,3). Solid line: 3-0; dotted

line: 03.

Fig; 2. Probability profiles for system of references 11 and 15 obtained by

solving the exact GME (solid line) and the Isomnesic GME (dashed line).

Fig. 3. Average adbond energy E(t) obtained within the Markovian approximation

for a range of values of the parameter T.

Fig. 4. E(t) obtained by using the isomnesic approximation for time scales

ranging from picoseconds to microseconds, for laser intensity I = 1 W/cm2.

Fig. 5. Same as Fig. 4 for I = 25 W/cm 2.

S:.

9•

6." . o- " .• . . - " ,.'



- 13-

16. W. H. Louisell, "Quantum Statistical Properties of Radiation"

(John Wiley & Sons, New York 1973), Chapter 6.

17. H. Frank, H. Hoinkes and H. Wilsch, Surf. Sci. 63, 121 (1977).



-12-

References

1. T. F. George, A. C. Beri, K. S. Lam and J. Lin, in Laser Applications,

edited by J. F. Ready and R. K. Erf (Academic Press, New York, 1984),

pp. 69-127.

2. T. F. George, J. Lin, A. C. Beri and W. C. Murphy, Prog. Surf. Sci.

16, 139 (1984).

3. T. J. Chuang, Surf. Sci. Rep. 13, (1983).

4. J. Lin and T. F. George, J. Chem. Phys. 72, 2554 (1980);

J. Lin and T. F. George, Phys. Rev. B 24, 64 (1981).

5. J. Lin, A. C. Beri, M. Hutchinson, W. C. Murphy and T. F. George,

Phys. Lett. 79A, 233 (1980).

6. A. C. Beri and T. F. George, J. Chem. Phys. 78, 4288 (1983).

7. H. J. Kreuzer and D. N. Lowy, Chem. Phys. Lett. 78, 50 (1981); D. Lucas
and G. E. Ewing, Chem. Phys. 58, 385 (1981); Z. W. Gortel, H. J. Kreuzer,
P. Piercy and R. Teshima, Phys. Rev. B 27, 5066 (1983); 28, 2119 (1983).

8. C. Jedrzejek, K. F. Freed, S. Efrima and H. Metiu, Surf. Sci.

109, 191 (1981).

9. T. J. Chuang and H. Seki, Phys. Rev. Lett. 49, 382; T. J. Chuang,

J. Chem. Phys. 76, 3828 (1982).

10. W. C. Murphy and T. F. George, Surf. Sci. 102, L46 (1981).

11. A. C. Beri and T. F. George, J. Chem. Phys., in press.

12. R. W. Zwanzig, in Lectures in Theoretical Physics, Vol. III, edited by

W. E. Brittin, B. W. Downs and J. Downs (Interscience Publishers,

New York 1961), p. 106ff.

13. F. Haake, in Springer Tracts in Modern Physics, edited by G. H6hler

(Springer-Verlag, Berlin, 1973),p. 98ff.

14. C. Jedrzejek, K. F. Freed, E. Hood and H. Metiu, J. Chem. Phys. 79,

2436 (1983).

15. A. C. Beri and T. F. George, unpublished.



result, the sharp transitions assumed here wid be broadened by a detuning-

type effect, and estimates of the desorption rate presented above will

have to be modified. However, the selectivity represented by the dominant

Ti energy-transfer process will be retained.

For a complete study of desorption, transitions to the continuum

must be included, and at the outset it is difficult to predict which levels

will be most important. Work in this direction is in progress, and

represents a departure from the first-principles approach in the inclusion

of the bound-to-continuum transitions. This, as well as a complete first-

principles treatment of vibrational LSSP including desorption, will be

presented in the near future.
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becomes evident in the 100 ns results and beyond. The frequency of this

oscillation is seen to be k, where k is the amplitude of the laser

kernel kSS, , and is essentially the Rabi frequency for the pair of levels

resonant with the laser.

While the frequency of the long-term oscillations of P(t) and E(t)

depends only on the laser term, being proportional to the square root of

the intensity, the rate of onset of this behaviour depends on a which varies

linearly as k0 and inversely as the amplitude 0 of the phonon kernel.

Thus, increasing the laser power from 1 W/cm 2 to 25 W/cm2 advances the onset

time for the oscillatory state while increasing the frequency by a factor

of 5, as displayed in Fig. 5.

Physically, the results of Figs. 4 and 5 can be interpreted in terms

of desorption rates. Thus, the time required for lAleat and IBIe't to

become large enough so that the amplitude of E(t) in the oscillatory regime

is substantially larger than the (t = 0) equilibrium Boltzmann value,is a

reasonable measure of the desorption time to within an order of magnitude.
-1

This time is estimated by TD = aC" For our case,

-D = - 0 5: (10, w) s , (31)
T D

where w is laser power in W/cm2 . Thus, for a I W/cm 2 laser, a hydrogen

atom will stay adsorbed on the KCz(H20) surface for - l0-4 s on the

average before desorbing, or at least becoming very highly excited. The

data mentioned here is for T = 150 K.

It must be pointed out that a number of mechanisms whereby the desorp-

tion cross section could be modified are not included. Spontaneous decay,

phase relaxation, phonon-phonon interaction and electron-hole pair creation

are some of the ones being consi red in extensions of this work. As a
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